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ABSTRACT 

Microalgae have valuable contributions in carbon dioxide sequestration. There are no 

much investigations about motivation of mix microalgae productivity in outdoor cultures. This 

study aims to evaluate microalgae biomass production in outdoor mesocosms under different 

weather conditions. The experiment was done in Tilapia pond in the hatchery of fisheries of 

Universiti Putra Malaysia. Weather parameters were recorded daily. Microalgae seeds were 

obtained from Tilapia pond effluent and added to eight floating aerated mesocosms. Mesocosms 

were divided into four treatments. Two g triple supper phosphate: 20g Urea were used as 

fertilizers. Physical and chemical conditions, microalgae primary productivity and biomass, and 

species composition were measured every two days. Three cycles were categorized as mix, wet 

and dry cycles based on weather recording scores. Water quality parameters in treatments and 

controls cultures showed significant variations. Primary production variables were higher in the 

fertilized non-sheltered mesocosms (treatment 1). Productivity variables were lower in the dry 

cycle and higher in the mix cycle. The highest value of fixed CO2 was (3.2) mg/L/d in treatment 

1 in the mix cycle, while the lowest value was (0.11) mg/L/d in treatment 3 and control 1 in 

dry cycle. Changes in weather patterns are seen in the light and temperature values. Microalgae 

biomass was lower in dry weather conditions because of effect of high air temperature. Weather 

conditions and different treatments significantly influenced microalgae species composition, 

due to the sensitivity in some of them to different light intensities. Chlorophytes were the most 

abundant due to their ability to adapt with different culture conditions. 

 Key words: Primary productivity, Mesocosms, Climate change, Microalgae biomass, Weather 

change, Chlorophytes dominance.  
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RESUMEN 

Las microalgas tienen contribuciones valiosas en el secuestro de dióxido de carbono. No 

hay muchas investigaciones sobre la motivación de mezclar la productividad de microalgas en 

cultivos al aire libre. Este estudio tiene como objetivo evaluar la producción de biomasa de 

microalgas en mesocosmos exteriores bajo diferentes condiciones climáticas. El experimento 

se realizó en un estanque de tilapia en el criadero de pesquerías de Universiti Putra Malaysia. 

Los parámetros meteorológicos se registraron diariamente. Se obtuvieron semillas de 

microalgas del efluente del estanque de tilapia y se agregaron a ocho mesocosmos aireados 

flotantes. Los mesocosmos se dividieron en cuatro tratamientos. Dos g de fosfato triple cena: 

20 g de urea se utilizaron como fertilizantes. Cada dos días se midieron las condiciones físicas 

y químicas, la biomasa y productividad primaria de microalgas y la composición de especies. 

Tres ciclos se clasificaron como ciclos mixtos, húmedos y secos según las puntuaciones de los 

registros meteorológicos. Los parámetros de calidad del agua en los cultivos de tratamientos y 

controles mostraron variaciones significativas. Las variables de producción primaria fueron 

mayores en los mesocosmos fertilizados no abrigados (tratamiento 1). Las variables de 

productividad fueron menores en el ciclo seco y mayores en el ciclo de mezcla. El valor más 

alto de CO2 fijo fue (3.2) mg / L / d en el tratamiento 1 en el ciclo de mezcla, mientras que el 

valor más bajo fue (0.11) mg / L / d en el tratamiento 3 y el control 1 en el ciclo seco. Los 

cambios en los patrones climáticos se ven en los valores de luz y temperatura. La biomasa de 

microalgas fue menor en condiciones de clima seco debido al efecto de la alta temperatura del 

aire. Las condiciones climáticas y los diferentes tratamientos influyeron significativamente en 

la composición de las especies de microalgas, debido a la sensibilidad de algunas de ellas a 

diferentes intensidades de luz. Las clorofitas fueron las más abundantes debido a su capacidad 

para adaptarse a diferentes condiciones de cultivo. 

Palabras clave: Productividad primaria, Mesocosmos, Cambio climático, Biomasa de 

microalgas, Cambio climático, Dominio de clorofitas. 

 

INTRODUCTION 

World economies, human health, weather patterns were affected negatively by global 

warming (Adio-Moses & Aladejana, 2016; Damari et al., 2016; Murray & Lopez, 2013). Carbon 

dioxide capture and sequestration is one of the most serious challenges nowadays for global 

warming reduction ( Fernández et al., 2012). Microalgae as large consumer of CO2 can 

sequester carbon dioxide from gases emission in atmosphere (Ma & Gao, 2014;Saharan et al., 

2013;Singh & Ahluwalia, 2013), however, the cost of CO2 sequestration depends on the 
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microalga biomass and productivity (Farrelly et al., 2013). The high photosynthesis rate and 

the rapid growth rate are the main characters of CO2 fixation by microalgae (Wu et al., 2012).  

Cultivation methods and conditions influence microalgae biomass production. A 

combination of light intensity, temperature and nutrient level have profound effect on 

microalgae growth (Choi, 2014; Fagiri et al., 2013; Khalili et al., 2015). The higher growth rate 

of microalgae reflects the high light intensity and durations (Harun et al., 2014). The influence 

of temperature on algal cell structure ranged broadly between algae species, because there is 

a high correlation between temperature and cell volume (Agrawal, 2009; He et al., 2013; Yu 

et al., 2014). Temperature impacts significantly on the cellular chemical composition, nutrients 

uptake, CO2 assimilation and consequently impacts the growth rates for each species of 

microalgae. Temperature fluctuation controlled the high rate of microalgae outdoor production 

(Ras et al., 2013). In addition, the distribution of carbon dioxide and availability can be changed 

because of pH. The extreme pH levels can alter the availability of essential nutrients, and led 

to direct physiological effects ( Costache et al., 2013; Razzak et al., 2015; Shen et al., 2014). 

Microalgae growth depends on nutrient level in culture medium, phosphorus and nitrogen are 

the main important nutrient that enquired for growth              ( Brito et al., 2013; Kim et al., 

2014; Procházková et al., 2014).  

Microalgae produced on a larger scale are either grown in open ponds or in photo 

bioreactors. Using mesocosms for microalgae cultivation and biomass production is also 

interesting and can give valuable achievements ( Hernando et al., 2006; Petersen et al., 1997; 

Sommer, 2009; Sutherland et al., 2016; Vidoudez et al., 2011). So, the main objectives of 

current study are record growth and species composition of microalgae in mesocosms in semi-

controlled condition under variable weather conditions.   

 

MATERIAL AND METHODS 

Experimental design and algal culture techniques: The experimental was done in Tilapia 

pond (TPU) in the hatchery of fisheries of Universiti Putra Malaysia (UPM) from March to May 

2016. Ten litres of microalgae seeds (10% of culture volume) were added to eight (110 L) 

capacity floating mesocosms as four treatments, treatment 1:  non- sheltered with fertilizers, 

treatments 2: non- sheltered without fertilizers, treatment 3: sheltered with fertilizers, 

treatment 4: sheltered without fertilizers. The sheltered mesocosms covered by shelter with 

black orchid plastic netting of 50% light transmission. Microalgae seeds were obtained from 

Tilapia pond effluent. Two g triple supper phosphate: 20g Urea were used as fertilizers 

(personal communication with Dr. Hishamuddin Omar). Aeration (2 hours on/ 2 hours off) 

throughout the day was performed. Sample collection was done in alternative days; one cycle 

period was 10 days. 
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Figure 1: The floating mesocosms filled by microalgae culture in fish pond. 

Weather conditions recording: Air temperature (Bing weather free application), light 

intensity by using light meter Licor model (L1-250), and weather state (rainy, cloudy, sunny, 

haze) were recorded daily three times a day at 8-9 am, 12-1pm, and 4-5 pm. Currently weather 

data of Bing online weather application comes from multiple providers such as Weather.com, 

Foreca and AccuWeather.com.  

Physical and chemical conditions: The pH was measured by pH meter, water temperature 

and dissolved oxygen measured by dissolved oxygen meter (YSI MODEL 58). Light intensity 

measured by light meter Licor model (L1-250), conductivity measured by AST meter. Alkalinity 

was measured by titration of 100 ml of sample with 0.02 N sulphuric acid using few drops of 

mixed reagent (methyl red and bromocresol green) as an indicator to determine the end of the 

titration, the colour change from blue to colourless (VL Snoeyink & D Jenkins, 1980). Total 

nitrogen and Nitrate-nitrogen analyses were carried out according to Kitamura et al., (1982). 

Ammonium concentration was analysed based on phenol hypochlorite method described by 

Weatherburn (1967). Phosphate-phosphorus (PO4-P) was determined according to the ascorbic 

acid method (Ademoroti, 1996). Total phosphorus was measured according to Parsons et al. 

(1984). 

Quantifying algal biomass: Water samples were measured immediately by Hitachi UC-

1900 UV visible spectrophotometer at 680 nm three times for each sample and the average 

was taken to determine optical density. For dry weight measuring, 50 ml of water sample was 

filtered by predried Sartorius glass filter paper in oven dried at 60°C for 24h (Borowitzka et al., 

1991). To measure Chlorophyll a, 30 ml of water sample from each bottle was filtered by MS® 

cellulose acetate membrane filter (0.45 µm). Chlorophyll a was extracted with 5ml (90%) 

acetone overnight at 4°C. The extraction was homogenized by driller. After centrifugation, the 

absorbance of the supernatant was measured by spectrophotometer (Hitachi UC-1900) 



Sustainability, Agri, Food and Environmental Research, (ISSN: 0719-3726), 9(4), 2021: 539-559 
http://dx.doi.org/10.7770/safer-V0N0-art2156 

 

543 
 

(Gertraud Hötzel & Roger Croome, 1999). Chlorophyll a was calculated by the equation of 

Jeffrey and Humphrey (Jeffrey & Humphrey, 1975): 

[Chl. a] extract = 11.85A664 - 1.54A647 - 0.08A630 

Microalgae primary productivity: Primary productivity measured for each mesocosm in 

day 6 and day 10 of each cycle by incubation of one light bottle and one dark bottle for two 

hours, then dissolved oxygen measured using the Azide modification method by titration 

(Ademoroti, 1996). Initial dissolved oxygen measured immediately by portable probe. Gross 

primary productivity, net primary productivity and fixed carbon were calculated by the following 

equations:  

Community respiration (R) = initial - dark 

 Gross primary productivity (GPP) = Light – dark 

Net primary productivity (NPP) = GPP-R 

Carbon fixed= NPP*0.375 

Since (0.375) is the factor comes from differences in atomic mass (12/32) 

Microalgae Productivity in (g/L/d)  

Productivity was calculated using the following equation according to (Eliane Dalva Godoy 

Danesi et al., 2011):  

Px = (Xm – Xi)(Tc)-1 

where: Px = productivity (g/L/ day) 

Xi = initial biomass concentration (g/ L) 

Xm = maximum biomass concentration (g/ L) 

Tc = cultivation time related to the maximum biomass concentration (days) 

Cell density and species composition study: One hundred ml water samples collected 

from each mesocosms, and then two drops of glutaraldehyde were added for microalgae 

preservation. Settlement and counting methods (Edler &Elbrächter, 2010).  

Statistical analysis: Factorial ANOVA statistical analysis from SPSS version 21 was 

used to indicate the significant of variance among microalgae culture treatments, weather 

conditions and days of microalgae growth. Daily air temperatures and light intensities were 

analysed statistically by one way ANOVA SPSS version 21.  

 

RESULTS 



Sustainability, Agri, Food and Environmental Research, (ISSN: 0719-3726), 9(4), 2021: 539-559 
http://dx.doi.org/10.7770/safer-V0N0-art2156 

 

544 
 

Weather conditions scoring and categories: Weather conditions in Malaysia is a very 

complicated event because it considers about daily fluctuation of sunlight, cloud cover, haze 

and rainfall. Thus, it is important to classify the interpreted weather conditions. Weather 

conditions during current study period have been scored and categories, since each cultivation 

cycle was under one type of weather conditions, mix, wet and dry. Each culture cycle is for 10 

days. Weather conditions during the mix characterized by dense cloud cover, mix cloudy sky, 

heavy haze, light rains. In the wet cycle, weather conditions characterized by heavy rains many 

times a day or daily, and cloud cover. In the dry cycle, weather conditions characterized by 

sunny sky, no rains or light rain. 

 

Table 1: Summary of weather scoring and categories for three microalgae   cultivation cycles 

: 1 to 4 indicate to wet weather conditions, 5 to 7 indicate to mix weather conditions, 8 to 10 

indicate to dry weather.  
Days of 
cycle 

Cycle 1 Cycle 2 Cycle 3 

D1 5 10 1 

D2 6 10 3 

D3 5 9 4 

D4 4 8 2 

D5 6 9 3 

D6 5 7 4 

D7 7 7 1 

D8 4 10 3 

D9 5 8 4 

D10 6 9 2 

Average 5.3 8.7 2.7 

category Mix Wet Dry 

 

 

Table 2: Mean ±SE of air temperature and light intensity at three times a day (n= 30) and rain 

fall gauging. letter in bold indicate to a significant difference (p< 0.05) within rows.  

Parameters 

 
Cycles in different weather conditions 

 Mix cycle Wet cycle Dry cycle 

Air temperature (C°) 29.2 ±0.52 a 28.8±0.23 a 30.9±0.38 b 

Light intensity (μmolm-²s-1) 349.2±68.1a 452.9±40.6 b 461.1±58.6 b 

*Rain fall (mm) 178 ±42.7 384 ±20.4 69.0 ±23.0 

* pH of Rain water 6.0 ± 0.31 6.51±0.17 5.67±0.58 

* Nitrate (NO3) of Rain water 

mg/L 
0.60± 0.02a 0.27± 0.00b 0.89± 0.01a 

 

Physico-chemical parameters: Water quality parameters in all treatments were 

monitored over 10 days for three cycles and showed significant variations among the variables.  

Water temperature changed in the three cycles. There was significant difference in water 

temperature between different cycles, and between treatments (p< 0.05), while there was no 

significant different within cultivation days. The highest value was 32.7°C recorded during dry 
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cycle for treatment 1, while the lowest value was 28.1°C also recorded during dry cycle for 

treatment 3. 

Electric conductivity of the treatments fluctuated within cultivation days. There were no 

significant differences within cycles and within treatments, while there were significant 

differences within cultivation days. Values of pH in three cycles were continually on the alkaline 

side and ranged from 7.2 to 10.05. pH values increased obviously with culture time. There 

were significant differences in pH values within treatments and cultivation days (p < 0.05), 

while there were no significant differences in pH values between cycles. 

Dissolved oxygen fluctuated clearly by weather conditions, there was significant differences 

between cycles and cultivation days (p < 0.05), while there was no significant difference 

between treatments. 

There was wide range of difference in light intensity between the shaded and non-

shaded treatments. The range of light intensity in treatment 1 was (377.5 - 781) μmol/m²/s, 

in treatment 2 was (406 - 765) μmol/m²/s, in treatment 3 was (56 - 291) μmol/m²/s, in 

treatment 4 was (87.5-323) μmol/m²/s respectively. There were significant differences 

between treatments (p<0.05) but there were no significant differences between cycles.  

Alkalinity range was (44.5 – 67.5) mg CaCO3 /L in treatment 1, and (31 – 55.5) mg CaCO3 /L 

in treatment 3. There were significant differences in alkalinity within treatments, cycles and 

culture days (p<0.05). The highest averages of alkalinity were in the 4th and the 10th day in all 

cycles. Generally, alkalinity of treatment 1 higher than treatment 3 and higher in dry cycle than 

other cycles. 

Nutrients concentration: Nitrate and ammonium decreased gradually with increasing in 

time of cultivation, as shown in Table 7.5. Comparison in the differences between the three 

cycles and treatments showed in (Figure 7.2 x & Figure 7.3). Nitrate concentration ranged 

between (0.01– 0.9) mg/L in treatment 1, (0 – 1.1) mg/L in treatment 2, (0.01 – 4.23) mg/L 

in treatment 3, and (0.01 – 1.49) mg/L in treatment 4. The lowest value was in treatment 2 in 

the 6th & 8th of the dry cycle, while the highest was in treatment 3 in the 2nd day of the wet 

cycle. There were significant differences (p < 0.05) within treatments and within different 

cycles, while there were no significant differences within cultivation days. Ammonium 

concentration ranged between (0.01 – 0.74) mg/L in treatment 1, (0 – 0.15) mg/L in treatment 

2, (0.03– 1.73) mg/L in treatment 3, and (0 – 0.06) mg/L in treatment 4. The highest value 

was in treatment 3 in the 2nd day of the mix cycle, while the lowest was in treatment 2 in 6th, 

8th &10th days of dry and wet cycles, and in treatment 4 in the 8th day of the wet cycle. There 

were significant differences in ammonium concentrations within culture days, treatment and 

within weather conditions (p < 0.05). 

Total nitrogen decreased gradually in all treatments and in all cycles. The ranged was 

between (0.06 – 2.75) mg/L in treatment 1, (0.03 – 1.64) mg/L in treatment 2, (0.08 – 1.72) 

mg/L in treatment 3, and (0.05 – 1.43) mg/L in treatment 4.  There were significant differences 
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in TN within culture days and within weather conditions (p<0.05) but there were no significant 

differences within treatments.  

Phosphate (PO4
-) concentrations decreased gradually during cultivation days. Its values 

ranged from (0.00 – 0.25) mg/L in treatment 1, (0.00 – 0.17) mg/L in treatment 2, (0.01 – 

0.35) mg/L in treatment 3, and (0.01 – 0.17) mg/L in treatment 4. There were significant 

differences in phosphate concentration within treatments and within the weather conditions 

(p< 0.05), while was no significant differences within culture days. Total phosphorus decreased 

gradually until the end of all cycles. The value of total phosphorus ranged from (0.09 – 0.52) 

mg/L in treatment 1, (0.01 – 0.27) mg/L in treatment 2, (0.09 – 0.54) mg/L in treatment 3, 

and (0.04 – 0.24) mg/L in treatment 4. There were significant differences (p< 0.05) in TP 

within treatments, culture days, and weather conditions. TN: TP ratio ranged from (1.2:1 – 

8.6:1) in treatment 1, (1:1 - 14:1) in treatment 2, (1:1 – 10:1) in treatment 3, and (1:1 – 

17:1) in treatment 4. TN: TP fluctuated during culture time. There were significant differences 

in TN: TP within culture days, and weather conditions (p<0.05), but there were no significant 

differences within treatments 

  Biomass and productivity-Growth performance: The growth performance of the mix 

microalgae in fertilized and non-fertilized mesocosms from three culture cycles are expressed 

by optical density, cell dry weight and chlorophyll- a concentrations. The growth rate was 

slightly increased with culture time. Optical density values of mix microalgae shown in (Figure 

2). Optical density in treatment 1 were significantly better (p <0.05) than treatment 2 and 

controls. The highest value for treatment 1 was (0.64) in the 10th day of the mix cycle, and 

(0.19) in 10th of the wet cycle and (0.15) in the 10th of the dry cycle. There were also 

significant differences within culture days and weather conditions. Optical densities values 

generally lower in dry cycle. Chlorophyll a contents of mix microalgae is shown in (Figure 2). 

Chlorophyll a concentrations of mix microalgae in treatment 1 were significantly different (p 

<0.05) with treatment 2 and controls. The highest value for treatment 1 was (9.3 µg L ˉ¹) in 

the 10th day of the mix cycle, (6.6 µg L ˉ¹) in 8th of the dry cycle and (5.7 µg L ˉ¹) in the 

10th of the wet cycle. There were also significant differences within culture days and weather 

conditions (p<0.05). Dry weight measurements increase during the 10 experiment days are 

shown in (Figure 2). The maximum value of dry weight was in treatment 1 (145) mg/L in the 

6th day of the mix cycle, while the maximum value of dry weight in treatment 2 was (100) 

mg/L in 6th day of the dry cycle. There were also significant differences within culture days and 

weather conditions (p< 0.05).  
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Figure 2: Growth performance of microalgae in controls and treatments in Mix, Wet and Dry 

cycles categorized based on weather conditions. 

 

Microalgae Productivity in (g/L/d)- Microalgae Productivity in (g/L/d) is showen in Table 3. 

Table 3: Mean ±SE of Productivity (g/L/d) of mix microalgae in all treatments in different 

weather conditions, (n=6), letter in bold indicate to a significant difference (p< 0.05) within 

colums.  

Treatments 

Culture cycles in different weather conditions 

Mix cycle Dry cycle Wet  get cycle 

Treatment 1 1.259±0.06 c 0.690±0.03  a 1.079±0.02 b 

Treatment 2 0.855±0.06 ab 0.569 ±0.01 a 0.556±0.01 a 

Treatment 3 0.763±0.01 b 0.683±0.06 a 0.603±0.07 a 

Treatment 4 0.053±0.02 a 0.557±0.03 a 0.423±0.02 a 
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Primary productivity and carbon fixation: Community respiration, gross production, net 

production, CO2 fixation recorded in the 6th day and the 10th day of each cycle. Primary 

production variables were higher in the fertilized non-sheltered mesocosms (treatment 1). In 

general, productivity variables were lower in the dry cycle and higher in the mix cycle as can 

be seen in Table (4) & Figure (3).  The highest value of fixed CO2 was 3.2 mg/L/d in treatment 

1 in the 6th day of the mix cycle, while the lowest value was 0.11 mg/L/d in treatment 3 in the 

6th day and treatment 2 in the 10th of the dry cycle. There were no significant differences in 

CO2 values between treatment 3, treatment 2 & treatment 4, while treatment 1 was significantly 

different in CO2 with other treatments.  Net production and gross production were no 

significantly different between treatment 2, treatment 3 and treatment 4 (p> 0.05), while 

treatment 1 was significantly different with other treatments, also they were no significantly 

different between mix and wet cycles, while dry cycle was significantly different with the other 

cycles (p< 0.05). Community respiration values were very varied during cultivation days in all 

cycles. They were lowest in the 10th day than the 6th day for each cycle. There was no a 

significant difference between treatments in community respiration (p> 0.05), while their 

values were significantly different between cycles (p< 0.05).  
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Figure 3: Mean ±SE of Community respiration, gross primary production, Net primary 

production, and fixed carbon dioxide in different weather conditions. a: between weather 

conditions, b: between treatments. Different letters indicated to significant at (p < 0.05). 

 

 

 

Table 4: Mean ±SE of Primary productivity parameters for treatments and controls in the 6th 

day and the 10th day of all cycles in different weather conditions.  

Parameters  Treatments  Mix cycle Wet cycle Dry cycle 

D6 D10 D6 D10 D6 D10 

Community 

respiration 

Control 1 2.1±0.8 0.5±0.0 1.0±0.1 0.6±0.1 1.0±0.1 0.4±0.1 

Treatment 1 1.3±0.0 0.5±0.1 0.3±0.0 1.3±0.7 1.1±0.1 0.2±0.0 

Control 2 2.0±0.4 0.2±0.1 0.9±0.0 0.2±0.0 0.2±0.0 0.2±0.0 

Treatment 2 0.8±0.1 0.7±0.0 1.0±0.1 0.3±0.1 0.5±0.1 0.6±0.2 

Gross 

Primary 

Production 

Control 1 1.8±0.6 1.4±0.5 1.6±0.1 1.9±0.2 1.6±0.0 1.1±0.1 

Treatment 1 8.3±1.0 6.4±1.2 6.5±1.4 5.0±0.3 2.9±0.2 0.9±0.1 

Control 2 2.3±0.5 1.2±0.1 2.2±0.1 1.8±0.0 1.5±0.0 0.9±0.1 

Treatment 2 1.1±0.1 2.6±0.2 2.3±0.4 2.6±0.2 1.2±0.1 2.0±0.0 

Net 

Primary 

Production 

Control 1 0.7±0.1 1.0±0.4 0.6±0.0 1.3±0.2 0.5±0.1 0.7±0.2 

Treatment 1 7.0±0.9 6.0±1.2 6.1±1.3 3.8±0.9 1.9±0.4 0.8±0.1 

Control 2 0.4±0.0 1.0±0.4 1.4±0.1 1.6±0.1 1.3±0.1 0.9±0.1 

Treatment 2 0.8±0.0 1.9±0.2 1.3±0.5 2.4±0.3 0.7±0.2 0.5±0.2 

Fixed 

carbon 

dioxide 

Control 1 0.3±0.0 0.4±0.1 0.2±0.0 0.5±0.1 0.2±0.0 0.3±0.1 

Treatment 1 2.6±0.3 2.2±0.5 1.7±0.5 1.4±0.4 0.7±0.1 0.3±0.0 

Control 2 0.1±0.0 0.4±0.0 0.5±0.0 0.6±0.0 0.5±0.0 0.3±0.0 

Treatment 2 1.1±0.5 0.7±0.1 0.5±0.2  0.9±0.1 0.3±0.1 0.2±0.1 
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Species composition and cell density: The mix microalgae were not much divers in the 

culture. Twenty-six species were recorded in mix cycle, 6 species were dominant, 29 species 

were recorded in dry cycle, 8 species were dominant, and 26 species were recorded in wet 

cycle, 8 species were dominant. Chlorophyta was the main dominant group during all cycles, it 

formed 80%, 83%, and 85% during mix, dry and wet cycles respectively, while Cyanophyta 

formed 12%, 10%, and 7.6% during mix, dry and wet cycles respectively. Bacillariophyta 

formed only 8%, 6%, and 7.6% during mix, dry and wet cycles respectively. Cell density was 

significantly higher during mix cycle (p< 0.05). There was a clear obvious variation of 

microalgae population among the different treatments. During mix cycle, Monoraphidium 

contortum was the most dominant species with the highest cell densities. It cell density reached 

(1224.4 × 103 cell/ L) in treatment 1 (non-sheltered with fertilizer) in the 10th day of the mix 

cycle, on the other hand, its lowest density was (0) recorded at control 2 in the 8 th day of the 

same cycle. Chlorella vulgaris (20× 103), Chlamydomonas reinhardtii (18× 103), Oocystis 

borgei (17.8× 103) and Monoraphidium griffithii (12.8× 103) were the most dominant with the 

highest cell densities (cell/L) in treatment 3 in the 10th day respectively. Ulothrix aequalis cell 

density reached to (51 x 103) cell/L in treatment 3 in the 6th day.  During dry cycle, the highest 

cell density was for Merismopedia punctata (115.5x103   cell/ L) in treatment 1 followed by 

Coelastrum microporum (105x103 cell/ L) in treatment 4, Golenkinia radiata (15.1 x103 cell/ L) 

in treatment 1 and Oocystis borgei (11.6 x103 cell/ L) in treatment 4 in the 10th day 

respectively. While the highest density of Monoraphidium griffithii in the dry cycle was (61.5x 

103) cell/ L in the treatment 1 in the 2nd day and Ulothrix aequalis (18.75x103cell/L) in 

treatment 2 in the D0.   During the wet cycle, the highest cell densities was also for Coelastrum 

microporum (20.3 x 103 cell/L) in treatment 1 in the 10th, followed by Monoraphidium 

contortum, Scenedesmus quadricauda, Scenedesmus acuminatus, and Merismopedia punctata.  

The highest cell density of Chlamydomonas reinhardatii was generally in the sheltered 

mesocosms (Treatment 3 & Treatment 4).  The highest cell density was (18 x 103) cell/ L in 

the treatment 2 in the 10th day of the mix cycle, (13.1x103) cell/L in treatment 3 in the 2nd day 

of the dry cycle, (7x103) cell/L in the treatment 4 in the 8th day of the wet cycle.  The highest 

density of Chlorella vulgaris was (20.4 x103) in the treatment 3 in the 10th day of the mix cycle, 

(19 x 103) cell/L in treatment 3 in the 2nd day of the dry cycle, and (5.4 x103) cell /L in treatment 

1 in the 4th day of the wet cycle. Scenedesmus genus was the more divers with 8 species. 

Scenedesmus quadricauda was not abundant during the mix cycle, while it had high cell density 

(17.8 x103) cell/L in treatment 1 in the 4th day of the wet cycle, and (3.6 x 103) cell/L in 

treatment 1 in the 10th day of the dry cycle.  The highest density of Golenkinia radiata was 

(15.1 x103) cell/L in treatment 1 in the 10th day of the dry cycle, and (1.8 x 103) cell/L in 

treatment 4 in the 10th day of the wet cycle. The highest density of Oocystis borgei was (17.8 
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x 103) cell/L in treatment 3 in the 10th day of the mix cycle, and (8.9 x 103) cell/L in control 1 

in the 6th day of the wet cycle.  

 

 

 

 

 

 

 

 

 

 

 

Table 5: Microalgae species recorded in all mesocosms in different weather conditions.  

Division  Species order in 
Figure 4 

Chlorophyta Coelastrum microporum Nägeli 1 

Monoraphidium contortum Komárková-Legnerová 2 

Monoraphidium griffithii M Komárková-Legnerová 3 

Oocystis borgei J.W. Snow 4 

Pandorina morum Bory 5 

Scenedesmus quadricauda Brébisson 6 

Scenedesmus ellipticus Corda 7 

Scenedesmus opoliensis P. Richter 8 

Scenedesmus dimorphus Kützing 9 

Scenedesmus acuminatus Chodat 10 

Scenedesmus subspicatus Chodat 11 

Chlamydomonas reinhardatii P.A. Dangeard 12 

Scenedesmus abundans (O. Kirchner) Chodat 13 

Golenkinia radiata Chodat 14 

Scenedesmus apiculatus (West & G.S. West) Chodat 15 

Pediastrum duplex Meyen 16 

Chlorella vulgaris Beyerinck 17 

Zosterocarpus oedogonium (Meneghini) Bornet 18 

Tetraëdron minimum Hansgirg 19 

Ulothrix aequalis Kützing 20 

Dictyosphaerium pulchellum H.C. Wood 21 

Lagerheimia ciliate Chodat  22 

Kirchneriella obesa West & G.S. West 23 
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Figure 4: Microalgae species cultivated in all treatments in different weather conditions. The 

scientific names mentioned with their affiliation in (Table 5). 

 

DISCUSSION 

During the three outdoor culture cycles, the changes in weather patterns are seen in 

the light, temperature and rain fall values in (Table 1). The mass culture of microalgae in 

Cyanophyta Merismopedia punctata Meyen 24 

Microcystis aeruginosa Kützing 25 

Chroococcus turgidus Nägeli 26 

Bacillariophyta  Navicula rhynchocephala Kützing 27 

Cyclotella meneghiniana Kützing 28 

Synedra ulna (Nitzsch) Ehrenber 29 
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various production systems is primarily concerned with maximising daily yield of microalgal 

biomass in the conditions of light limitation. To achieve an ideal condition for microalgae 

production, two main aspects are generally considered, the physicochemical environmental 

factors such as temperature, light intensity, pH and aeration, and the other is selection of a 

suitable nutrient medium (Esra Imamoglu et al., 2007). 

Mix microalgae cultures can withstand and tolerate a wide range of variations in physical 

and chemical parameters. Dissolved oxygen, light intensity, and temperature are the factors 

that can impact microalgae growth and morphological features (Vamadevaiah, 2010). Light 

and nutrients are most vital environmental factors that affect photosynthesis in photosynthetic 

organisms such microalgae and plants. From this term, the experiment was designed to test 

the influence of these parameters on productivity of microalgae. In case of Malaysia, the daily 

light intensity fluctuated accordance to the sky status and weather condition. Light plays an 

important role in growth rate of microalgae. The growth rate of microalgae can vary under 

different light exposures, durations and exposure frequencies. In non-sheltered mesocosms 

(Treatment 1& Treatment 2) the growth of microalgae was better than the sheltered 

mesocosms (Treatment 3&Treatment 4).  

pH is an important factor that effects on microalgal biomass production. pH increased 

with increasing of culture growth because photosynthesis can cause pH rising in algal culture 

(García et al., 2006). Since the initial pH was around (7.5 to 8.0). Meanwhile, alkaline pH 

indicated to higher algal biomass productivity. Microalgae are sensitive to acidic conditions due 

to inhibition of cellular enzymes and biological processes in low pH conditions (Skjånes et al., 

2013). Consequently, the optimal pH of most of the algal species has been found in the range 

of (7 to 9). In addition, CO2 fixation depends on pH values, because availability of bicarbonate 

and carbonate materials that resulted from CO2 dissolving in culture water to microalgal cells 

depends on the pH of the culture.  Increasing pH in treatment 1 and treatment 3 can be also 

due to presence of nitrogen sources (Urea) in the medium, because consumption of nitrate 

from the medium helps in increase of alkalinity (Horn, 2008). Majority of microalgae require 

nitrogen in a soluble form, since urea being the best source (Bejarano et al., 2011). According 

to (Boyd &Tucker, 2012), 45% of urea is nitrogen, and 19 – 24 % of triple superphosphate is 

phosphorus. The augmented amount of nitrogen in the culture medium leads to increase 

microalgae growth. Temperature and pH influence Hydrolysis of urea to ammonia and carbon 

dioxide in the culture medium. Nutrients uptake has gone in the opposite direction with 

increasing of biomass. Nitrogen is most important nutrient after carbon to microalgae. Nitrogen 

occurs in several forms, and the most nitrogen compounds are assimilated by microalgae are 

ammonium (NH4
+) and nitrate (NO3

–) (Oliver & Ganf, 2000).  Optimal phosphorus concentration 

that is favourable to growth of microalgae is not less than 0.045mg/L and not higher than 1.65 

mg/L according to (Ren, 2014), this agreed with current result, however, he stated that when 

TP equals to 0.02mg/L, microalgae can grow well, but the concentration of phosphorus has no 
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promotion to growth rate of algae when TP ≥ 0.2mg/L, while (Becker, 1994) stated that the 

tolerant range of microalgae to phosphorus is from 0.05 to 20 mg/L. Phosphate (PO-
4) is the 

major required form of phosphorus by microalgae.  

Optimization of mix microalgae biomass production involves an understanding how it 

can be affected by various factors individually and also their multiple interactions in the whole 

complex process. Growth performance was influenced significantly by the different light 

exposition and fertilizer addition. The highest growth rate was in treatment 1 because of the 

light availability in comparison with treatment 3.  

Microalgae biomass was lower in dry weather conditions because of effect of high air 

temperature that was clear especially for non-fertilized treatments (Treatment 2 & Treatment 

4). Meanwhile, temperature led to an effect on the physiological characters of microalgae in 

the mesocosms because of the small volumes of culture medium. Water temperature correlated 

negatively with axis 1 which represented biomass and productivity variables. Temperature has 

a strong impact on the cell chemical structure, nutrients and CO2 uptake, and the growth rates 

for every species of microalgae. Cell density, pH, and ammonium (NH4
+) concentrations 

correlated positively with biomass and productivity variables. Phosphate (PO4
-), Nitrate (NO3

-

), and total phosphorus correlated positively with axis 2 and negatively with optical density, 

cell density and dissolved oxygen.  

Species existence along an environmental gradient often follows Shelford's law of 

tolerance (Braak &Verdonschot, 1995), each species grows in optimal way at a particular value 

of environmental parameters and cannot flourish when the value increases or decrease from 

this range. So, this limited correlation between the species and the variable is called species 

niche, however, some species may prefer extreme environmental conditions or their optima 

may fall outside the environmental region.  

In the present study, the weather conditions and different treatments (Sheltered & non- 

sheltered) significantly influenced microalgae species composition, probably due to the 

sensitivity in some of them to different light intensities. Chlorophytes were the most abundant 

due to their ability to adapt with different culture conditions. 

Species distributed based on their high cell densities in treatments that are located near 

them. Some species tended to be most present and abundant the non-sheltered mesocosms 

(Treatment 1& Treatment 2), while others leant to be abundant in the sheltered mesocosms 

(Treatment 3 & Treatment 4). Chlorophytes have a maximum growth in a wide range of light 

intensity from (129 to 773.8 μmolm-²s-1). The Chrysophytes (Navicula rhynchocephala and 

Cyclotella meneghiniana) had their optimal growth at light intensity values 49.50 & 184.6 

μmolm-²s-1 respectively. This result agreed with (Fadel et al., 2015), since diatoms prefer low 

light intensities. Monoraphidium contortum is commonly found in meso to eutrophic 

environment. It was considered by (Bogen et al., 2013) as promising algae for liquid biofuel 

production, because of its high biomass productivity. (Latala, 1991) stated that Monoraphidium 
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griffithii grows best at (150 -270 µE m-2 s-1), same with the current result, this robust species 

withstood with medium nature light intensities (152 µE m-2 s -1). Chlorella vulgaris is very 

common in fresh waters, show great adaptability to various environmental conditions, grow 

and divided faster when CO2 and nutrient are available (Singh &Singh, 2015). It is a commonly 

cultivated for its high dry weight production and it is commercially cultivated worldwide for 

nutritional, cosmetic purposes. Chlamydomonas reinhardtii can be cultivated 

photoautotrophicaly and heterotrophically as well (Kliphuis et al., 2012), in aerobic and 

anaerobic medium. It has been cultivated worldwide for industrial purpose specially hydrogen 

production in anaerobic conditions. Species belonging to the genus Oocystis are relatively 

common in different freshwater water bodies and predominant in small lakes and ponds. 

(Stoyneva et al., 2007) mentioned that Oocystis sp. contributed significantly in microalgae 

biomass in Tanganyika lake.  Microcystis aeruginosa was flourished with high water 

temperature (30 ºC) and low nutrient concentrations, same findings were achieved by (Parrish, 

2014). 

In Conclusion, reduced light intensity may have impacted microalgae populations. The 

amount of available light is closely correlated to survival and growth, and too much light can 

lead to light inhibition for the surface layer of microalgae. There was a significant decline in 

abundance of species cell density, and a corresponding change in species composition in all 

treatments during the dry cycle due to the high air temperature during the dry weather 

conditions. Mesocosm cultures indicated that some species can adapt well to large scale 

production.  
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